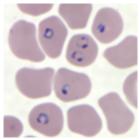
DIVERSITY-ORIENTED SYNTHESIS YIELDS NOVEL MULTISTAGE ANTIMALARIAL INHIBITORS

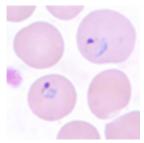
Kato, N. et al, Nature, 2016, Accelerated Article Preview

Celeste Alverez
Current Literature
9/10/2016

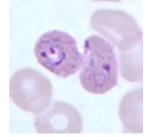
Malaria

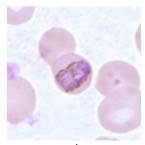

- Caused by Plasmodium parasites
- Carried by 30-40 species of the Anopheles genus mosquitos
- 2 types:
 - Uncomplicated
 - Symptoms are flu-like including fever, sweats, neausea/vomiting, chills, headaches, bodyaches
 - Severe
 - Complicated by organ failure, blood or metabolism abnormalities
 - Including anemia, kidney failure, cerebral malaria, hypotension, acute respiratory distress syndrome, hyperparasitemia (>5% of blood cells are infected with parasite
 - Can relapse depending on the type of parasite causing the initial infection (due to dormant parasite living in liver)

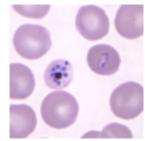
Malaria parasite life cycle


Life Cycle of the Malaria Parasite sexual stage: male or female gametocytes form mosquito stages gametocytes 0 The mosquito ingests human the parasite during blood cell blood feeding. zygote ookinete human blood cell The mosquito human = liver cell injects the parasite when it bites the human. liver mosquito human stages liver stage sporozoites

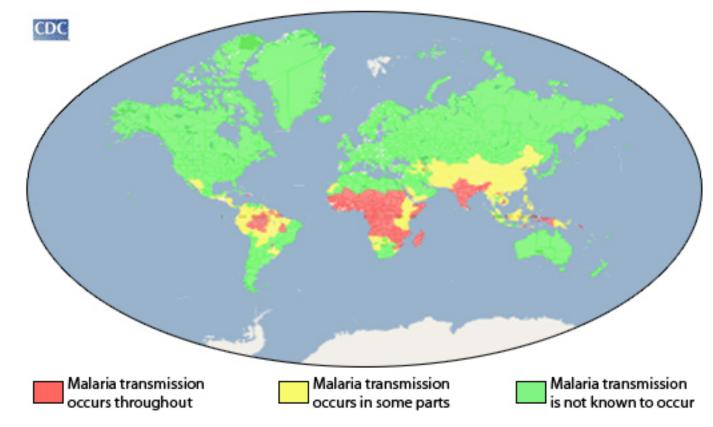
Parasites


- 5 malaria causing parasites that infect humans
 - P. falciparum (causes severe form, found worldwide in tropical/subtropical areas)
 - P. vivax (can lead to relapse, found mostly in South America and Asia, some in Africa)
 - P. ovale (can lead to relapse, found mostly in Africa and western Pacific islands)
 - P. malariae (can lead to chronic malaria, found worldwide)
 - P. knowlesi (typically infects macaques, but can infect humans; found in Southeast Asia, 24-replication cycle)


P. falciparum 9/10/2016


P. vivax

P. ovale


P. malariae

P. knowlesi

Celeste Alverez @ Wipf Group

World Distribution

Estimated 214 million cases in 2015

Current Standard of Care

- Typically effective against blood-stage parasite (the form causing active disease)
- Need drugs effective at all stages of life cycle

Chloroquine discovered 1934 *P. falciparum* widely resistant

Amodiaquine can be used to treat chloroquine-resistant *P. falciparum* malaria

Mefloquine discovered 1970s Potentially serious neurological/psychological side effects

Quinine
extracts containing quinine
have been used to treat
malaria since the 1600's

Artemisinin and derivatives suggested to be used in combination vs. as a singular treatment by WHO

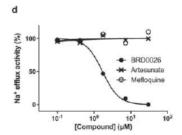
9/10/2016

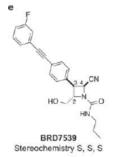
Compound Identification

- 1. ~100,000 compounds screened against a multi-drug resistant strain of *P. falciparum* (Dd2) for inhibition of blood-stage parasite growth
- Counter-screened against a panel of parasite isolates and drug-resistant clones to deprioritize compounds with known mechanisms of action
 - Including screening efficacy in liver-stage and transmissionstages
- 4 series were found:

Activity of Compounds with Known Targets

BRD0026 Stereochemistry R, S, S


Stereochemistry C₂, C₃, C₄


Pf, Dd2 EC₅₀

S, S, R	R, R, S
> 5.00 µM	> 5.00 μM
S, R, S	R, S, R
> 5.00 µM	0.532 μM
S, S, S	R, R, R
0.867 µM	> 5.00 µM
R, S, S	S, R, R
0.346 µM	> 5.00 µM

C

Assay (µM)	BRD0026
Pf, Dd2, EC ₅₀	0.346
PfNITD609R, EC50	1.77
Pf gametocyte, IV-V, EC50	1.98
Pb liver stage, EC ₅₀	> 20
PBS solubility	~20
HepG2, CC ₅₀	> 50

Stereochemistry C₂, C₃, C₄ *Pf*, Dd2 EC₅₀

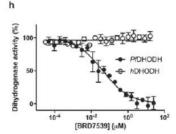
7 7, 00	7 1, Duz 2050					
R, S, S	S, R, R					
0.035 µM	> 5.00 µM					
R, R, S	S, S, R					
> 5.00 µM	> 5.00 µM					
R, S, R	S, R, S					
> 5.00 µM	> 5.00 µM					
R, R, R	S, S, S					
3.01 µM	0.010 µM					

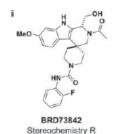
g

Assay (µM)	BRD7539
Pf, Dd2, EC ₅₀	0.010
PfscDHODH, EC50	8.910
Pf, TM90C6B*, EC50	0.011
PfCYTb:G33V [†] , EC ₅₀	0.003
PfDHODH:E182D‡, EC50	0.637
PfrDHODH, IC50	0.033
Pf gametocyte, IV-V, EC50	> 20.0
Pb liver stage, EC ₅₀	> 15.0
PBS solubility	< 1.0
HepG2, CC ₅₀	> 50.0

BRD73842

0.643


0.459


0.021

66

49

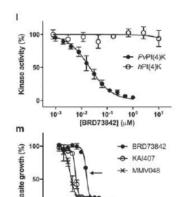
>10

Stereochemistry Pf, Dd2 EC₅₀

R S 0.069 µM 2.31 µM Assay (µM)

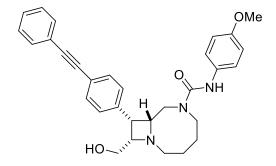
Pf, Dd2, EC₅₀

Pf gametocyte, IV-V, EC₅₀


Pb liver stage, EC₅₀

Pv Pl(4)K, IC₅₀

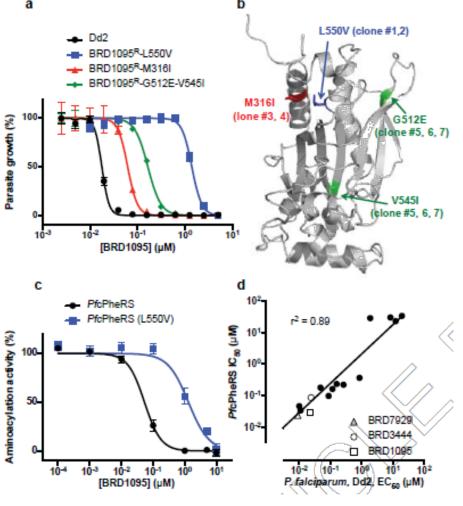
PBS solubility (µM)


HepG2 CC₅₀ (µM)

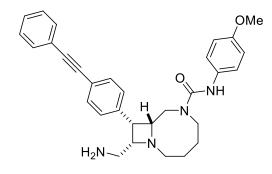
hERG IC₅₀ (µM)

[Compound] (µM)

BRD3444



BRD3444


Pf, Dd2 EC₅₀ = 9 nM Pf gametocyte (IV-V) EC₅₀ = 663 nM Pb liver stage EC₅₀ = 140 nM

• Shows submicromolar potency at 3 stages of *P. falciparum* life cycle

BRD3444 MOA

 Developed mutant lines resistant to BRD1095

BRD1095

- Found a singlenucleotide variant in the α-subunit of phenylalanyl-tRNA synthetase (*Pf*cPheRS)
- PheRS is new target for antimalarial treatment

BRD3444 Synthesis

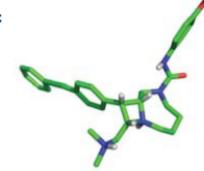

Kato, N. et al, Nature, 2016, Accelerated Article Preview

SAR

,	BRD3444
Pf, Dd2 EC ₅₀ (nM)	9
PBS solubility (µM)	< 1
Mouse Plasma protein binding (%)	99.9
Mouse Cl _{int} (µL/min/mg)	248
Human Cl _{int} (µL/min/mg)	142
HepG2 CC ₅₀ (µM)	> 50
hERG IC ₅₀ (μM)	5.2

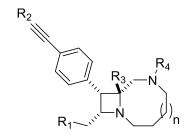
Route (mg/kg)	IV (3)	PO (10)
Cmax (µM)		0.6
Tmax (hr)		0.5
T _{1/2} (hr)	3.7	3.2
AUC _{0-t} (µM*hr)	1.21	41
AUC _{0-inf} (µM*hr)	1.4	4
MRT _{0-inf} (hr)	2.8	
Vss (L/kg)	12	
F (%)	86	
CL (mL/min/kg)	72	

а


Stereochemistry S, R, R

b

 $\begin{array}{c} \text{Stereochemistry } C_2,\,C_3,\\ C_4\,\textit{Pf},\,\text{Dd2 EC}_{50} \end{array}$


S, S, R	R, R, S
6.840 µM	1.370 μM
S, R, S	R, S, R
1.640 µM	4.650 uM
S, S, S	R, R, R
3.440 μM	0.017 μM
R, S, S	S, R, R
4.970 μM	0.009 µM

SAR

	<i>Pf</i> Dd2 EC ₅₀ (μM)	PfcPheRS IC ₅₀ (µM)	R ¹	R ²	R ³	R ⁴	n
BRD8805	0.003	0.033	-NMe ₂	-Ph	-Н	i, O°	F 1
BRD7929	0.009	0.023	8		×	OMe	1
BRD1095	0.010	0.046	-NH ₂				1
BRD3444	0.011	0.033	-OH			*	1
BRD3316	0.022	0.029	-O(CH ₂) ₂ CO ₂ H	*		*	1
BRD4716	0.024	0.086	-NMe <i>i</i> Pr		*	*	1
BRD2132	0.048	0.179	-NMe(CH₂)₂F		*		1
BRD0185	0.087	0.097	-OH			*	2
BRD8493	0.116	0.162	-N\$		*		1
BRD6479	0.158	0.233	−N N-Me				1
BRD4873	0.261	0.221	-OH	-2-CNPh	*	Ow I	1
BRD9599	0.850	0.366		-Ph	*	(8)	0
BRD2936	1.87	29.4	*		-CH ₂ OH	*	1
BRD5349	8.32	30.9			-н	$\stackrel{s}{\prec_{N}} \mathcal{D}$	1
BRD5774	12.2	23.4		\prec	*	A COME	1
BRD8260	19.5	34.6	*	-Ph		I _N	1

BRD7929 vs. BRD3444

BRD7929

Cossins (strain)	Ctoro		EC ₅₀ (μM) BRD7929	
Species (strain)	Stage -	BRD3444		
P. falciparum (Dd2)	Blood	0.009	0.005	
P. falciparum (3D7HLH/BRD)	Blood		0.009	
P. falciparum (3D7)	Gametocyte (IV-V)	0.663	0.160	
P. falciparum (NF54)	Gametocyte (ID / D)*		0.270 / < 10	
P. falciparum (NF54)	Gametocyte (E / L) †	0.282 / 1.44		
P. falciparum (NF54)	Gamete formation (M / F)‡	~1.00 / 0.804		
P. falciparum (NF54)	Liver	1.31	0.340	
P. berghei (ANKA)	Liver	0.140	0.162	
P. cynomolgi (M)	Liver (SF / LF)¶	3.34 / 2.86	0.933 / 1.04	

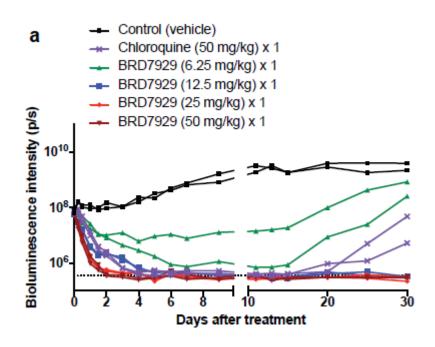
BRD7929 vs. BRD3444

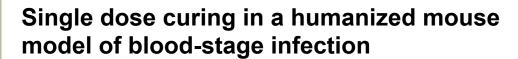
	BRD3444*	BRD1095*	BRD7929*	BRD7929†
Pf, Dd2 EC ₅₀ (nM)	9	10	9	
PBS solubility (µM)	< 1	25	15	
Mouse Plasma protein binding (%)	99.9	99.3	99.9	
Mouse Cl _{int} (µL/min/mg)	248	< 20	21	
Human Cl _{int} (µL/min/mg)	142	< 20	31	
HepG2 CC ₅₀ (μM)	> 50	15.6	9	
hERG IC ₅₀ (µM)	5.2	5.2	2.1	

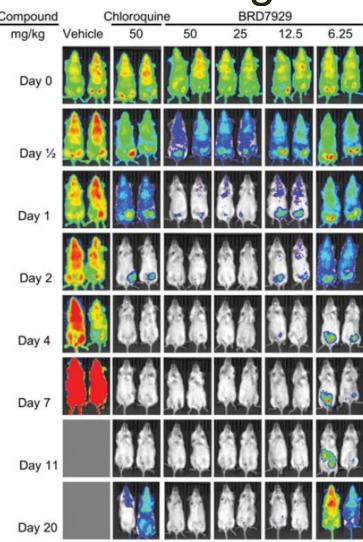
Route (mg/kg)	IV (3)	PO (10)	IV (3)	PO (10)	IV (2.5)	IV (2.5)‡	PO (10)	PO (3)	PO (9)
Cmax (µM)		0.6		0.6			0.54	0.21	0.6
Tmax (hr)		0.5		4			8	12	12
T _{1/2} (hr)	3.7	3.2		28.8	N.C	32			
AUC _{0-t} (µM*hr)	1.21	41	71	11.71	3.5	9"	111	6.41	19.7 [¶]
AUC _{0-inf} (µM*hr)	1.4	4	14.9			11.2		7.2	22.6
MRT _{0-inf} (hr)	2.8		39.2		40.5	45		35.4	37.8
Vss (L/kg)	12		16		24	19			
F (%)	86		50				80§		
CL (mL/min/kg)	72		6.7		9.9	7.1			

^{*} PK in CD-1 mice

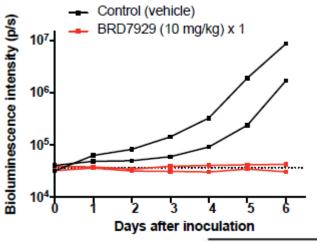
[†]PK in P. falciparum (3D7HLH/BRD) infected NSG mice

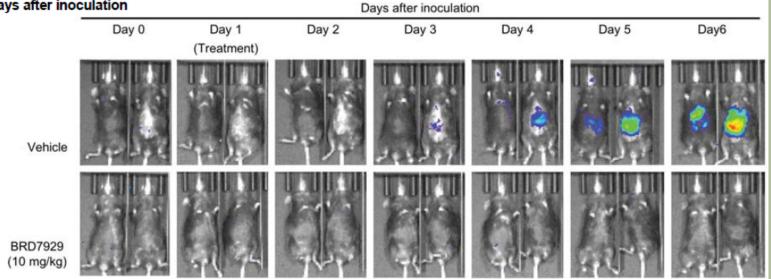

[‡]IV determined in a separate assay over 72 h to determine T1/2


 $[\]P t = 24 h$


[#]t = 72 h

[§]F (%) based on initial IV study at 24 h

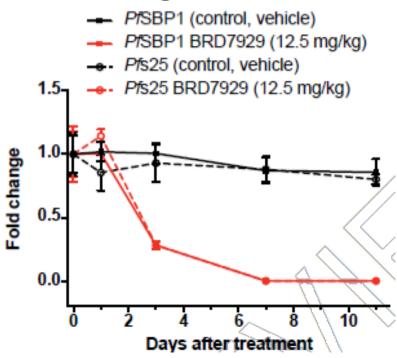

Efficacy of BRD7929 in blood-stage



Efficacy of BRD7929 in liver-stage

 Blood-stage biomarker also not present in blood

Suggests elimination of dormant liver-stage infection

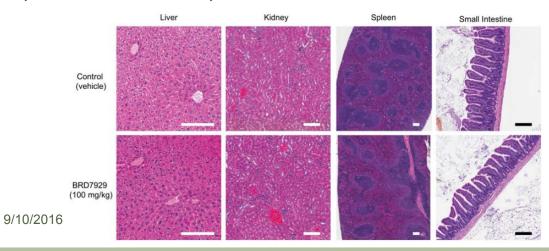


9/10/2016

Celeste Alverez @ Wipf Group

17

Efficacy of BRD7929 in transmission-stage


Marker not detectable after 7 days

Suggests the use as prophylaxis to prevent transmission of malarial parasites

Safety of BRD7929

Compound		BRD3444	BRD1095	BRD7929	BRD3316
		ОН	NH ₂	NMe ₂	O(CH ₂) ₂ CO ₂ H
HepG2; CC ₅₀ (μM)		> 50	16	9	> 50
A549; CC ₅₀ (μM)		18	10	6	> 50
HEK 293; CC ₅₀ (μM)		45	16	10	> 50
Phototoxicity 3T3 NRUa*		Non-phototoxic		Non-phototoxic	
Reversible CYP inhibition [†] ; IC ₅₀ (µM)		> 10 (all)	4 (CYP1A)	> 10 (all)	> 10 (all)
Time-dependent CYP inhibition; kinact/KI (µM-1L-1min-1)‡	(0.0158 (CYP3A)	negative (all)	negative (all)	negative (all)

- BRD7929 shows moderate cytotoxicity in select cell lines and hERG inhibition at 2.21 uM
- BRD3316 shows much better safety profile but is 4-fold less potent against Pf Dd2 (no other data shown)

 High dose study of BRD7929 (100 mg/kg) shows no adverse effects in organs shown

Conclusions

- Utilizing a diversity-oriented synthesis generated 4 new inhibitors of malarial parasites
- A bicyclo azetidine (BRD3444) was found to inhibit parasite growth through a previously unknown malarial target (PfcPheRS)
- After SAR exploration BRD7929 was found to eliminate bloodand liver-stage P. falciparum infection in a humanized mouse model with a single dose
- BRD7929 was also found to apparently prevent transmission possibly allowing for use as a prophylactic against *P. falciparum* with a single dose
- The safety profile needs to be further explored, however initial high dose tests suggest tolerability
- Resistance was unable to be forced over 60 days while the known antimalarial atovaquone acquired resistance during this same time